Metamath Proof Explorer


Theorem fcoi2

Description: Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Assertion fcoi2 F:ABIBF=F

Proof

Step Hyp Ref Expression
1 df-f F:ABFFnAranFB
2 cores ranFBIBF=IF
3 fnrel FFnARelF
4 coi2 RelFIF=F
5 3 4 syl FFnAIF=F
6 2 5 sylan9eqr FFnAranFBIBF=F
7 1 6 sylbi F:ABIBF=F