Metamath Proof Explorer


Theorem fconst

Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Hypothesis fconst.1 BV
Assertion fconst A×B:AB

Proof

Step Hyp Ref Expression
1 fconst.1 BV
2 fconstmpt A×B=xAB
3 1 2 fnmpti A×BFnA
4 rnxpss ranA×BB
5 df-f A×B:ABA×BFnAranA×BB
6 3 4 5 mpbir2an A×B:AB