Metamath Proof Explorer


Theorem fcoresf1ob

Description: A composition is bijective iff the restriction of its first component to the minimum domain is bijective and the restriction of its second component to the minimum domain is injective. (Contributed by GL and AV, 7-Oct-2024)

Ref Expression
Hypotheses fcores.f φF:AB
fcores.e E=ranFC
fcores.p P=F-1C
fcores.x X=FP
fcores.g φG:CD
fcores.y Y=GE
Assertion fcoresf1ob φGF:P1-1 ontoDX:P1-1EY:E1-1 ontoD

Proof

Step Hyp Ref Expression
1 fcores.f φF:AB
2 fcores.e E=ranFC
3 fcores.p P=F-1C
4 fcores.x X=FP
5 fcores.g φG:CD
6 fcores.y Y=GE
7 1 2 3 4 5 6 fcoresf1b φGF:P1-1DX:P1-1EY:E1-1D
8 1 2 3 4 5 6 fcoresfob φGF:PontoDY:EontoD
9 7 8 anbi12d φGF:P1-1DGF:PontoDX:P1-1EY:E1-1DY:EontoD
10 anass X:P1-1EY:E1-1DY:EontoDX:P1-1EY:E1-1DY:EontoD
11 9 10 bitrdi φGF:P1-1DGF:PontoDX:P1-1EY:E1-1DY:EontoD
12 df-f1o GF:P1-1 ontoDGF:P1-1DGF:PontoD
13 df-f1o Y:E1-1 ontoDY:E1-1DY:EontoD
14 13 anbi2i X:P1-1EY:E1-1 ontoDX:P1-1EY:E1-1DY:EontoD
15 11 12 14 3bitr4g φGF:P1-1 ontoDX:P1-1EY:E1-1 ontoD