Metamath Proof Explorer


Theorem ffvbr

Description: Relation with function value. (Contributed by Zhi Wang, 25-Nov-2025)

Ref Expression
Assertion ffvbr F : A B X A X F F X

Proof

Step Hyp Ref Expression
1 simpl F : A B X A F : A B
2 1 ffund F : A B X A Fun F
3 simpr F : A B X A X A
4 1 fdmd F : A B X A dom F = A
5 3 4 eleqtrrd F : A B X A X dom F
6 funfvbrb Fun F X dom F X F F X
7 6 biimpa Fun F X dom F X F F X
8 2 5 7 syl2anc F : A B X A X F F X