Metamath Proof Explorer


Theorem fgmin

Description: Minimality property of a generated filter: every filter that contains B contains its generated filter. (Contributed by Jeff Hankins, 5-Sep-2009) (Revised by Mario Carneiro, 7-Aug-2015)

Ref Expression
Assertion fgmin B fBas X F Fil X B F X filGen B F

Proof

Step Hyp Ref Expression
1 elfg B fBas X t X filGen B t X x B x t
2 1 adantr B fBas X F Fil X t X filGen B t X x B x t
3 2 adantr B fBas X F Fil X B F t X filGen B t X x B x t
4 ssrexv B F x B x t x F x t
5 4 adantl B fBas X F Fil X B F x B x t x F x t
6 filss F Fil X x F t X x t t F
7 6 3exp2 F Fil X x F t X x t t F
8 7 com34 F Fil X x F x t t X t F
9 8 rexlimdv F Fil X x F x t t X t F
10 9 ad2antlr B fBas X F Fil X B F x F x t t X t F
11 5 10 syld B fBas X F Fil X B F x B x t t X t F
12 11 com23 B fBas X F Fil X B F t X x B x t t F
13 12 impd B fBas X F Fil X B F t X x B x t t F
14 3 13 sylbid B fBas X F Fil X B F t X filGen B t F
15 14 ssrdv B fBas X F Fil X B F X filGen B F
16 15 ex B fBas X F Fil X B F X filGen B F
17 ssfg B fBas X B X filGen B
18 sstr2 B X filGen B X filGen B F B F
19 17 18 syl B fBas X X filGen B F B F
20 19 adantr B fBas X F Fil X X filGen B F B F
21 16 20 impbid B fBas X F Fil X B F X filGen B F