Step |
Hyp |
Ref |
Expression |
1 |
|
elfg |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐵 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑡 ) ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐵 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑡 ) ) ) |
3 |
2
|
adantr |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐵 ⊆ 𝐹 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐵 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑡 ) ) ) |
4 |
|
ssrexv |
⊢ ( 𝐵 ⊆ 𝐹 → ( ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑡 → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐵 ⊆ 𝐹 ) → ( ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑡 → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) ) |
6 |
|
filss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑡 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑡 ) ) → 𝑡 ∈ 𝐹 ) |
7 |
6
|
3exp2 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐹 → ( 𝑡 ⊆ 𝑋 → ( 𝑥 ⊆ 𝑡 → 𝑡 ∈ 𝐹 ) ) ) ) |
8 |
7
|
com34 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐹 → ( 𝑥 ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐹 ) ) ) ) |
9 |
8
|
rexlimdv |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐹 ) ) ) |
10 |
9
|
ad2antlr |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐵 ⊆ 𝐹 ) → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐹 ) ) ) |
11 |
5 10
|
syld |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐵 ⊆ 𝐹 ) → ( ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐹 ) ) ) |
12 |
11
|
com23 |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐵 ⊆ 𝐹 ) → ( 𝑡 ⊆ 𝑋 → ( ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑡 → 𝑡 ∈ 𝐹 ) ) ) |
13 |
12
|
impd |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐵 ⊆ 𝐹 ) → ( ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑡 ) → 𝑡 ∈ 𝐹 ) ) |
14 |
3 13
|
sylbid |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐵 ⊆ 𝐹 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐵 ) → 𝑡 ∈ 𝐹 ) ) |
15 |
14
|
ssrdv |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐵 ⊆ 𝐹 ) → ( 𝑋 filGen 𝐵 ) ⊆ 𝐹 ) |
16 |
15
|
ex |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐵 ⊆ 𝐹 → ( 𝑋 filGen 𝐵 ) ⊆ 𝐹 ) ) |
17 |
|
ssfg |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → 𝐵 ⊆ ( 𝑋 filGen 𝐵 ) ) |
18 |
|
sstr2 |
⊢ ( 𝐵 ⊆ ( 𝑋 filGen 𝐵 ) → ( ( 𝑋 filGen 𝐵 ) ⊆ 𝐹 → 𝐵 ⊆ 𝐹 ) ) |
19 |
17 18
|
syl |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( ( 𝑋 filGen 𝐵 ) ⊆ 𝐹 → 𝐵 ⊆ 𝐹 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( ( 𝑋 filGen 𝐵 ) ⊆ 𝐹 → 𝐵 ⊆ 𝐹 ) ) |
21 |
16 20
|
impbid |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐵 ⊆ 𝐹 ↔ ( 𝑋 filGen 𝐵 ) ⊆ 𝐹 ) ) |