Metamath Proof Explorer


Theorem fgmin

Description: Minimality property of a generated filter: every filter that contains B contains its generated filter. (Contributed by Jeff Hankins, 5-Sep-2009) (Revised by Mario Carneiro, 7-Aug-2015)

Ref Expression
Assertion fgmin ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐵𝐹 ↔ ( 𝑋 filGen 𝐵 ) ⊆ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 elfg ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐵 ) ↔ ( 𝑡𝑋 ∧ ∃ 𝑥𝐵 𝑥𝑡 ) ) )
2 1 adantr ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐵 ) ↔ ( 𝑡𝑋 ∧ ∃ 𝑥𝐵 𝑥𝑡 ) ) )
3 2 adantr ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐵𝐹 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐵 ) ↔ ( 𝑡𝑋 ∧ ∃ 𝑥𝐵 𝑥𝑡 ) ) )
4 ssrexv ( 𝐵𝐹 → ( ∃ 𝑥𝐵 𝑥𝑡 → ∃ 𝑥𝐹 𝑥𝑡 ) )
5 4 adantl ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐵𝐹 ) → ( ∃ 𝑥𝐵 𝑥𝑡 → ∃ 𝑥𝐹 𝑥𝑡 ) )
6 filss ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥𝐹𝑡𝑋𝑥𝑡 ) ) → 𝑡𝐹 )
7 6 3exp2 ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥𝐹 → ( 𝑡𝑋 → ( 𝑥𝑡𝑡𝐹 ) ) ) )
8 7 com34 ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥𝐹 → ( 𝑥𝑡 → ( 𝑡𝑋𝑡𝐹 ) ) ) )
9 8 rexlimdv ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∃ 𝑥𝐹 𝑥𝑡 → ( 𝑡𝑋𝑡𝐹 ) ) )
10 9 ad2antlr ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐵𝐹 ) → ( ∃ 𝑥𝐹 𝑥𝑡 → ( 𝑡𝑋𝑡𝐹 ) ) )
11 5 10 syld ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐵𝐹 ) → ( ∃ 𝑥𝐵 𝑥𝑡 → ( 𝑡𝑋𝑡𝐹 ) ) )
12 11 com23 ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐵𝐹 ) → ( 𝑡𝑋 → ( ∃ 𝑥𝐵 𝑥𝑡𝑡𝐹 ) ) )
13 12 impd ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐵𝐹 ) → ( ( 𝑡𝑋 ∧ ∃ 𝑥𝐵 𝑥𝑡 ) → 𝑡𝐹 ) )
14 3 13 sylbid ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐵𝐹 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐵 ) → 𝑡𝐹 ) )
15 14 ssrdv ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐵𝐹 ) → ( 𝑋 filGen 𝐵 ) ⊆ 𝐹 )
16 15 ex ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐵𝐹 → ( 𝑋 filGen 𝐵 ) ⊆ 𝐹 ) )
17 ssfg ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → 𝐵 ⊆ ( 𝑋 filGen 𝐵 ) )
18 sstr2 ( 𝐵 ⊆ ( 𝑋 filGen 𝐵 ) → ( ( 𝑋 filGen 𝐵 ) ⊆ 𝐹𝐵𝐹 ) )
19 17 18 syl ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( ( 𝑋 filGen 𝐵 ) ⊆ 𝐹𝐵𝐹 ) )
20 19 adantr ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( ( 𝑋 filGen 𝐵 ) ⊆ 𝐹𝐵𝐹 ) )
21 16 20 impbid ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐵𝐹 ↔ ( 𝑋 filGen 𝐵 ) ⊆ 𝐹 ) )