| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfg | ⊢ ( 𝐵  ∈  ( fBas ‘ 𝑋 )  →  ( 𝑡  ∈  ( 𝑋 filGen 𝐵 )  ↔  ( 𝑡  ⊆  𝑋  ∧  ∃ 𝑥  ∈  𝐵 𝑥  ⊆  𝑡 ) ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝑡  ∈  ( 𝑋 filGen 𝐵 )  ↔  ( 𝑡  ⊆  𝑋  ∧  ∃ 𝑥  ∈  𝐵 𝑥  ⊆  𝑡 ) ) ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐵  ⊆  𝐹 )  →  ( 𝑡  ∈  ( 𝑋 filGen 𝐵 )  ↔  ( 𝑡  ⊆  𝑋  ∧  ∃ 𝑥  ∈  𝐵 𝑥  ⊆  𝑡 ) ) ) | 
						
							| 4 |  | ssrexv | ⊢ ( 𝐵  ⊆  𝐹  →  ( ∃ 𝑥  ∈  𝐵 𝑥  ⊆  𝑡  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐵  ⊆  𝐹 )  →  ( ∃ 𝑥  ∈  𝐵 𝑥  ⊆  𝑡  →  ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡 ) ) | 
						
							| 6 |  | filss | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑡  ⊆  𝑋  ∧  𝑥  ⊆  𝑡 ) )  →  𝑡  ∈  𝐹 ) | 
						
							| 7 | 6 | 3exp2 | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( 𝑥  ∈  𝐹  →  ( 𝑡  ⊆  𝑋  →  ( 𝑥  ⊆  𝑡  →  𝑡  ∈  𝐹 ) ) ) ) | 
						
							| 8 | 7 | com34 | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( 𝑥  ∈  𝐹  →  ( 𝑥  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐹 ) ) ) ) | 
						
							| 9 | 8 | rexlimdv | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐹 ) ) ) | 
						
							| 10 | 9 | ad2antlr | ⊢ ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐵  ⊆  𝐹 )  →  ( ∃ 𝑥  ∈  𝐹 𝑥  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐹 ) ) ) | 
						
							| 11 | 5 10 | syld | ⊢ ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐵  ⊆  𝐹 )  →  ( ∃ 𝑥  ∈  𝐵 𝑥  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐹 ) ) ) | 
						
							| 12 | 11 | com23 | ⊢ ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐵  ⊆  𝐹 )  →  ( 𝑡  ⊆  𝑋  →  ( ∃ 𝑥  ∈  𝐵 𝑥  ⊆  𝑡  →  𝑡  ∈  𝐹 ) ) ) | 
						
							| 13 | 12 | impd | ⊢ ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐵  ⊆  𝐹 )  →  ( ( 𝑡  ⊆  𝑋  ∧  ∃ 𝑥  ∈  𝐵 𝑥  ⊆  𝑡 )  →  𝑡  ∈  𝐹 ) ) | 
						
							| 14 | 3 13 | sylbid | ⊢ ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐵  ⊆  𝐹 )  →  ( 𝑡  ∈  ( 𝑋 filGen 𝐵 )  →  𝑡  ∈  𝐹 ) ) | 
						
							| 15 | 14 | ssrdv | ⊢ ( ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝐵  ⊆  𝐹 )  →  ( 𝑋 filGen 𝐵 )  ⊆  𝐹 ) | 
						
							| 16 | 15 | ex | ⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝐵  ⊆  𝐹  →  ( 𝑋 filGen 𝐵 )  ⊆  𝐹 ) ) | 
						
							| 17 |  | ssfg | ⊢ ( 𝐵  ∈  ( fBas ‘ 𝑋 )  →  𝐵  ⊆  ( 𝑋 filGen 𝐵 ) ) | 
						
							| 18 |  | sstr2 | ⊢ ( 𝐵  ⊆  ( 𝑋 filGen 𝐵 )  →  ( ( 𝑋 filGen 𝐵 )  ⊆  𝐹  →  𝐵  ⊆  𝐹 ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝐵  ∈  ( fBas ‘ 𝑋 )  →  ( ( 𝑋 filGen 𝐵 )  ⊆  𝐹  →  𝐵  ⊆  𝐹 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  ( ( 𝑋 filGen 𝐵 )  ⊆  𝐹  →  𝐵  ⊆  𝐹 ) ) | 
						
							| 21 | 16 20 | impbid | ⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝐵  ⊆  𝐹  ↔  ( 𝑋 filGen 𝐵 )  ⊆  𝐹 ) ) |