Metamath Proof Explorer


Theorem fib4

Description: Value of the Fibonacci sequence at index 4. (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Assertion fib4 Fibci4=3

Proof

Step Hyp Ref Expression
1 3p1e4 3+1=4
2 1 fveq2i Fibci3+1=Fibci4
3 3nn 3
4 fibp1 3Fibci3+1=Fibci31+Fibci3
5 3 4 ax-mp Fibci3+1=Fibci31+Fibci3
6 3m1e2 31=2
7 6 fveq2i Fibci31=Fibci2
8 fib2 Fibci2=1
9 7 8 eqtri Fibci31=1
10 fib3 Fibci3=2
11 9 10 oveq12i Fibci31+Fibci3=1+2
12 1p2e3 1+2=3
13 5 11 12 3eqtri Fibci3+1=3
14 2 13 eqtr3i Fibci4=3