Metamath Proof Explorer


Theorem fib4

Description: Value of the Fibonacci sequence at index 4. (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Assertion fib4 Fibci 4 = 3

Proof

Step Hyp Ref Expression
1 3p1e4 3 + 1 = 4
2 1 fveq2i Fibci 3 + 1 = Fibci 4
3 3nn 3
4 fibp1 3 Fibci 3 + 1 = Fibci 3 1 + Fibci 3
5 3 4 ax-mp Fibci 3 + 1 = Fibci 3 1 + Fibci 3
6 3m1e2 3 1 = 2
7 6 fveq2i Fibci 3 1 = Fibci 2
8 fib2 Fibci 2 = 1
9 7 8 eqtri Fibci 3 1 = 1
10 fib3 Fibci 3 = 2
11 9 10 oveq12i Fibci 3 1 + Fibci 3 = 1 + 2
12 1p2e3 1 + 2 = 3
13 5 11 12 3eqtri Fibci 3 + 1 = 3
14 2 13 eqtr3i Fibci 4 = 3