Metamath Proof Explorer


Theorem fib6

Description: Value of the Fibonacci sequence at index 6. (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Assertion fib6 Fibci 6 = 8

Proof

Step Hyp Ref Expression
1 5p1e6 5 + 1 = 6
2 1 fveq2i Fibci 5 + 1 = Fibci 6
3 5nn 5
4 fibp1 5 Fibci 5 + 1 = Fibci 5 1 + Fibci 5
5 3 4 ax-mp Fibci 5 + 1 = Fibci 5 1 + Fibci 5
6 5cn 5
7 ax-1cn 1
8 4cn 4
9 4p1e5 4 + 1 = 5
10 8 7 9 addcomli 1 + 4 = 5
11 6 7 8 10 subaddrii 5 1 = 4
12 11 fveq2i Fibci 5 1 = Fibci 4
13 fib4 Fibci 4 = 3
14 12 13 eqtri Fibci 5 1 = 3
15 fib5 Fibci 5 = 5
16 14 15 oveq12i Fibci 5 1 + Fibci 5 = 3 + 5
17 3cn 3
18 5p3e8 5 + 3 = 8
19 6 17 18 addcomli 3 + 5 = 8
20 5 16 19 3eqtri Fibci 5 + 1 = 8
21 2 20 eqtr3i Fibci 6 = 8