Metamath Proof Explorer


Theorem fib6

Description: Value of the Fibonacci sequence at index 6. (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Assertion fib6 Fibci6=8

Proof

Step Hyp Ref Expression
1 5p1e6 5+1=6
2 1 fveq2i Fibci5+1=Fibci6
3 5nn 5
4 fibp1 5Fibci5+1=Fibci51+Fibci5
5 3 4 ax-mp Fibci5+1=Fibci51+Fibci5
6 5cn 5
7 ax-1cn 1
8 4cn 4
9 4p1e5 4+1=5
10 8 7 9 addcomli 1+4=5
11 6 7 8 10 subaddrii 51=4
12 11 fveq2i Fibci51=Fibci4
13 fib4 Fibci4=3
14 12 13 eqtri Fibci51=3
15 fib5 Fibci5=5
16 14 15 oveq12i Fibci51+Fibci5=3+5
17 3cn 3
18 5p3e8 5+3=8
19 6 17 18 addcomli 3+5=8
20 5 16 19 3eqtri Fibci5+1=8
21 2 20 eqtr3i Fibci6=8