Metamath Proof Explorer


Theorem ficard

Description: A set is finite iff its cardinal is a natural number. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion ficard AVAFincardAω

Proof

Step Hyp Ref Expression
1 isfi AFinxωAx
2 carden AVxωcardA=cardxAx
3 cardnn xωcardx=x
4 eqtr cardA=cardxcardx=xcardA=x
5 4 expcom cardx=xcardA=cardxcardA=x
6 3 5 syl xωcardA=cardxcardA=x
7 eleq1a xωcardA=xcardAω
8 6 7 syld xωcardA=cardxcardAω
9 8 adantl AVxωcardA=cardxcardAω
10 2 9 sylbird AVxωAxcardAω
11 10 rexlimdva AVxωAxcardAω
12 1 11 biimtrid AVAFincardAω
13 cardnn cardAωcardcardA=cardA
14 13 eqcomd cardAωcardA=cardcardA
15 14 adantl AVcardAωcardA=cardcardA
16 carden AVcardAωcardA=cardcardAAcardA
17 15 16 mpbid AVcardAωAcardA
18 17 ex AVcardAωAcardA
19 18 ancld AVcardAωcardAωAcardA
20 breq2 x=cardAAxAcardA
21 20 rspcev cardAωAcardAxωAx
22 21 1 sylibr cardAωAcardAAFin
23 19 22 syl6 AVcardAωAFin
24 12 23 impbid AVAFincardAω