Metamath Proof Explorer


Theorem fidomdm

Description: Any finite set dominates its domain. (Contributed by Mario Carneiro, 22-Sep-2013) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion fidomdm FFindomFF

Proof

Step Hyp Ref Expression
1 dmresv domFV=domF
2 finresfin FFinFVFin
3 fvex 1stxV
4 eqid xFV1stx=xFV1stx
5 3 4 fnmpti xFV1stxFnFV
6 dffn4 xFV1stxFnFVxFV1stx:FVontoranxFV1stx
7 5 6 mpbi xFV1stx:FVontoranxFV1stx
8 relres RelFV
9 reldm RelFVdomFV=ranxFV1stx
10 foeq3 domFV=ranxFV1stxxFV1stx:FVontodomFVxFV1stx:FVontoranxFV1stx
11 8 9 10 mp2b xFV1stx:FVontodomFVxFV1stx:FVontoranxFV1stx
12 7 11 mpbir xFV1stx:FVontodomFV
13 fodomfi FVFinxFV1stx:FVontodomFVdomFVFV
14 2 12 13 sylancl FFindomFVFV
15 resss FVF
16 ssdomg FFinFVFFVF
17 15 16 mpi FFinFVF
18 domtr domFVFVFVFdomFVF
19 14 17 18 syl2anc FFindomFVF
20 1 19 eqbrtrrid FFindomFF