Metamath Proof Explorer


Theorem fimaxre2

Description: A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011) (Revised by Mario Carneiro, 13-Feb-2014)

Ref Expression
Assertion fimaxre2 AAFinxyAyx

Proof

Step Hyp Ref Expression
1 0re 0
2 rzal A=yAy0
3 brralrspcev 0yAy0xyAyx
4 1 2 3 sylancr A=xyAyx
5 4 a1i AAFinA=xyAyx
6 fimaxre AAFinAxAyAyx
7 6 3expia AAFinAxAyAyx
8 ssrexv AxAyAyxxyAyx
9 8 adantr AAFinxAyAyxxyAyx
10 7 9 syld AAFinAxyAyx
11 5 10 pm2.61dne AAFinxyAyx