Metamath Proof Explorer


Theorem fimin2g

Description: A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020)

Ref Expression
Assertion fimin2g ROrAAFinAxAyA¬yRx

Proof

Step Hyp Ref Expression
1 3simpc ROrAAFinAAFinA
2 sopo ROrARPoA
3 2 3ad2ant1 ROrAAFinARPoA
4 simp2 ROrAAFinAAFin
5 frfi RPoAAFinRFrA
6 3 4 5 syl2anc ROrAAFinARFrA
7 ssid AA
8 fri AFinRFrAAAAxAyA¬yRx
9 7 8 mpanr1 AFinRFrAAxAyA¬yRx
10 9 an32s AFinARFrAxAyA¬yRx
11 1 6 10 syl2anc ROrAAFinAxAyA¬yRx