Description: A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | fimin2g | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc | |
|
2 | sopo | |
|
3 | 2 | 3ad2ant1 | |
4 | simp2 | |
|
5 | frfi | |
|
6 | 3 4 5 | syl2anc | |
7 | ssid | |
|
8 | fri | |
|
9 | 7 8 | mpanr1 | |
10 | 9 | an32s | |
11 | 1 6 10 | syl2anc | |