Metamath Proof Explorer


Theorem fin23lem19

Description: Lemma for fin23 . The first set in U to see an input set is either contained in it or disjoint from it. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis fin23lem.a U=seqωiω,uViftiu=utiurant
Assertion fin23lem19 AωUsucAtAUsucAtA=

Proof

Step Hyp Ref Expression
1 fin23lem.a U=seqωiω,uViftiu=utiurant
2 1 fin23lem12 AωUsucA=iftAUA=UAtAUA
3 eqif UsucA=iftAUA=UAtAUAtAUA=UsucA=UA¬tAUA=UsucA=tAUA
4 2 3 sylib AωtAUA=UsucA=UA¬tAUA=UsucA=tAUA
5 incom UsucAtA=tAUsucA
6 ineq2 UsucA=UAtAUsucA=tAUA
7 6 eqeq1d UsucA=UAtAUsucA=tAUA=
8 7 biimparc tAUA=UsucA=UAtAUsucA=
9 5 8 eqtrid tAUA=UsucA=UAUsucAtA=
10 inss1 tAUAtA
11 sseq1 UsucA=tAUAUsucAtAtAUAtA
12 10 11 mpbiri UsucA=tAUAUsucAtA
13 12 adantl ¬tAUA=UsucA=tAUAUsucAtA
14 9 13 orim12i tAUA=UsucA=UA¬tAUA=UsucA=tAUAUsucAtA=UsucAtA
15 4 14 syl AωUsucAtA=UsucAtA
16 15 orcomd AωUsucAtAUsucAtA=