Metamath Proof Explorer


Theorem fipjust

Description: A definition of the finite intersection property of a class based on closure under pairwise intersection of its elements is independent of the dummy variables. (Contributed by RP, 1-Jan-2020)

Ref Expression
Assertion fipjust uAvAuvAxAyAxyA

Proof

Step Hyp Ref Expression
1 ineq1 u=xuv=xv
2 1 eleq1d u=xuvAxvA
3 ineq2 v=yxv=xy
4 3 eleq1d v=yxvAxyA
5 2 4 cbvral2vw uAvAuvAxAyAxyA