Metamath Proof Explorer


Theorem fipwss

Description: If a set is a family of subsets of some base set, then so is its finite intersection. (Contributed by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion fipwss A𝒫XfiA𝒫X

Proof

Step Hyp Ref Expression
1 fiuni AVA=fiA
2 1 sseq1d AVAXfiAX
3 sspwuni A𝒫XAX
4 sspwuni fiA𝒫XfiAX
5 2 3 4 3bitr4g AVA𝒫XfiA𝒫X
6 5 biimpa AVA𝒫XfiA𝒫X
7 fvprc ¬AVfiA=
8 0ss 𝒫X
9 7 8 eqsstrdi ¬AVfiA𝒫X
10 9 adantr ¬AVA𝒫XfiA𝒫X
11 6 10 pm2.61ian A𝒫XfiA𝒫X