Metamath Proof Explorer


Theorem fisn

Description: A singleton is closed under finite intersections. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion fisn fiA=A

Proof

Step Hyp Ref Expression
1 elsni xAx=A
2 elsni yAy=A
3 1 2 ineqan12d xAyAxy=AA
4 inidm AA=A
5 3 4 eqtrdi xAyAxy=A
6 vex xV
7 6 inex1 xyV
8 7 elsn xyAxy=A
9 5 8 sylibr xAyAxyA
10 9 rgen2 xAyAxyA
11 snex AV
12 inficl AVxAyAxyAfiA=A
13 11 12 ax-mp xAyAxyAfiA=A
14 10 13 mpbi fiA=A