Metamath Proof Explorer


Theorem fiuni

Description: The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Assertion fiuni AVA=fiA

Proof

Step Hyp Ref Expression
1 ssfii AVAfiA
2 1 unissd AVAfiA
3 fipwuni fiA𝒫A
4 3 unissi fiA𝒫A
5 unipw 𝒫A=A
6 4 5 sseqtri fiAA
7 6 a1i AVfiAA
8 2 7 eqssd AVA=fiA