Metamath Proof Explorer


Theorem fldidomOLD

Description: Obsolete version of fldidom as of 11-Nov-2024. (Contributed by Mario Carneiro, 29-Mar-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion fldidomOLD RFieldRIDomn

Proof

Step Hyp Ref Expression
1 isfld RFieldRDivRingRCRing
2 1 simprbi RFieldRCRing
3 1 simplbi RFieldRDivRing
4 drngdomn RDivRingRDomn
5 3 4 syl RFieldRDomn
6 isidom RIDomnRCRingRDomn
7 2 5 6 sylanbrc RFieldRIDomn