Metamath Proof Explorer


Theorem flid

Description: An integer is its own floor. (Contributed by NM, 15-Nov-2004)

Ref Expression
Assertion flid AA=A

Proof

Step Hyp Ref Expression
1 zre AA
2 flle AAA
3 1 2 syl AAA
4 1 leidd AAA
5 flge AAAAAA
6 1 5 mpancom AAAAA
7 4 6 mpbid AAA
8 reflcl AA
9 1 8 syl AA
10 9 1 letri3d AA=AAAAA
11 3 7 10 mpbir2and AA=A