Metamath Proof Explorer


Theorem flltnz

Description: The floor of a non-integer real is less than it. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion flltnz A¬AA<A

Proof

Step Hyp Ref Expression
1 reflcl AA
2 1 adantr A¬AA
3 simpl A¬AA
4 fllelt AAAA<A+1
5 4 adantr A¬AAAA<A+1
6 5 simpld A¬AAA
7 simpr A¬A¬A
8 flidz AA=AA
9 8 adantr A¬AA=AA
10 7 9 mtbird A¬A¬A=A
11 10 neqned A¬AAA
12 11 necomd A¬AAA
13 2 3 6 12 leneltd A¬AA<A