Metamath Proof Explorer


Theorem flltnz

Description: If A is not an integer, then the floor of A is less than A. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion flltnz ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) < 𝐴 )

Proof

Step Hyp Ref Expression
1 reflcl ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ )
2 1 adantr ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) ∈ ℝ )
3 simpl ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → 𝐴 ∈ ℝ )
4 fllelt ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) )
5 4 adantr ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) )
6 5 simpld ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 )
7 simpr ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ¬ 𝐴 ∈ ℤ )
8 flidz ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) = 𝐴𝐴 ∈ ℤ ) )
9 8 adantr ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) = 𝐴𝐴 ∈ ℤ ) )
10 7 9 mtbird ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ¬ ( ⌊ ‘ 𝐴 ) = 𝐴 )
11 10 neqned ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) ≠ 𝐴 )
12 11 necomd ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → 𝐴 ≠ ( ⌊ ‘ 𝐴 ) )
13 2 3 6 12 leneltd ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) < 𝐴 )