Metamath Proof Explorer


Theorem fmpt2d

Description: Domain and codomain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014)

Ref Expression
Hypotheses fmpt2d.2 φxABV
fmpt2d.1 φF=xAB
fmpt2d.3 φyAFyC
Assertion fmpt2d φF:AC

Proof

Step Hyp Ref Expression
1 fmpt2d.2 φxABV
2 fmpt2d.1 φF=xAB
3 fmpt2d.3 φyAFyC
4 1 ralrimiva φxABV
5 eqid xAB=xAB
6 5 fnmpt xABVxABFnA
7 4 6 syl φxABFnA
8 2 fneq1d φFFnAxABFnA
9 7 8 mpbird φFFnA
10 3 ralrimiva φyAFyC
11 ffnfv F:ACFFnAyAFyC
12 9 10 11 sylanbrc φF:AC