Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fneq1
Next ⟩
fneq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
fneq1
Description:
Equality theorem for function predicate with domain.
(Contributed by
NM
, 1-Aug-1994)
Ref
Expression
Assertion
fneq1
⊢
F
=
G
→
F
Fn
A
↔
G
Fn
A
Proof
Step
Hyp
Ref
Expression
1
funeq
⊢
F
=
G
→
Fun
⁡
F
↔
Fun
⁡
G
2
dmeq
⊢
F
=
G
→
dom
⁡
F
=
dom
⁡
G
3
2
eqeq1d
⊢
F
=
G
→
dom
⁡
F
=
A
↔
dom
⁡
G
=
A
4
1
3
anbi12d
⊢
F
=
G
→
Fun
⁡
F
∧
dom
⁡
F
=
A
↔
Fun
⁡
G
∧
dom
⁡
G
=
A
5
df-fn
⊢
F
Fn
A
↔
Fun
⁡
F
∧
dom
⁡
F
=
A
6
df-fn
⊢
G
Fn
A
↔
Fun
⁡
G
∧
dom
⁡
G
=
A
7
4
5
6
3bitr4g
⊢
F
=
G
→
F
Fn
A
↔
G
Fn
A