Metamath Proof Explorer


Theorem fnimapr

Description: The image of a pair under a function. (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Assertion fnimapr FFnABACAFBC=FBFC

Proof

Step Hyp Ref Expression
1 fnsnfv FFnABAFB=FB
2 1 3adant3 FFnABACAFB=FB
3 fnsnfv FFnACAFC=FC
4 3 3adant2 FFnABACAFC=FC
5 2 4 uneq12d FFnABACAFBFC=FBFC
6 5 eqcomd FFnABACAFBFC=FBFC
7 df-pr BC=BC
8 7 imaeq2i FBC=FBC
9 imaundi FBC=FBFC
10 8 9 eqtri FBC=FBFC
11 df-pr FBFC=FBFC
12 6 10 11 3eqtr4g FFnABACAFBC=FBFC