Metamath Proof Explorer


Theorem fniniseg

Description: Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014) (Proof shortened by Mario Carneiro , 28-Apr-2015)

Ref Expression
Assertion fniniseg FFnACF-1BCAFC=B

Proof

Step Hyp Ref Expression
1 elpreima FFnACF-1BCAFCB
2 fvex FCV
3 2 elsn FCBFC=B
4 3 anbi2i CAFCBCAFC=B
5 1 4 bitrdi FFnACF-1BCAFC=B