Metamath Proof Explorer


Theorem fnpr2ob

Description: Biconditional version of fnpr2o . (Contributed by Jim Kingdon, 27-Sep-2023)

Ref Expression
Assertion fnpr2ob AVBVA1𝑜BFn2𝑜

Proof

Step Hyp Ref Expression
1 fnpr2o AVBVA1𝑜BFn2𝑜
2 0ex V
3 2 prid1 1𝑜
4 df2o3 2𝑜=1𝑜
5 3 4 eleqtrri 2𝑜
6 fndm A1𝑜BFn2𝑜domA1𝑜B=2𝑜
7 5 6 eleqtrrid A1𝑜BFn2𝑜domA1𝑜B
8 2 eldm2 domA1𝑜BkkA1𝑜B
9 7 8 sylib A1𝑜BFn2𝑜kkA1𝑜B
10 1n0 1𝑜
11 10 nesymi ¬=1𝑜
12 vex kV
13 2 12 opth1 k=1𝑜B=1𝑜
14 11 13 mto ¬k=1𝑜B
15 elpri kA1𝑜Bk=Ak=1𝑜B
16 orel2 ¬k=1𝑜Bk=Ak=1𝑜Bk=A
17 14 15 16 mpsyl kA1𝑜Bk=A
18 2 12 opth k=A=k=A
19 17 18 sylib kA1𝑜B=k=A
20 19 simprd kA1𝑜Bk=A
21 20 eximi kkA1𝑜Bkk=A
22 isset AVkk=A
23 21 22 sylibr kkA1𝑜BAV
24 9 23 syl A1𝑜BFn2𝑜AV
25 1oex 1𝑜V
26 25 prid2 1𝑜1𝑜
27 26 4 eleqtrri 1𝑜2𝑜
28 27 6 eleqtrrid A1𝑜BFn2𝑜1𝑜domA1𝑜B
29 25 eldm2 1𝑜domA1𝑜Bk1𝑜kA1𝑜B
30 28 29 sylib A1𝑜BFn2𝑜k1𝑜kA1𝑜B
31 10 neii ¬1𝑜=
32 25 12 opth1 1𝑜k=A1𝑜=
33 31 32 mto ¬1𝑜k=A
34 elpri 1𝑜kA1𝑜B1𝑜k=A1𝑜k=1𝑜B
35 34 orcomd 1𝑜kA1𝑜B1𝑜k=1𝑜B1𝑜k=A
36 orel2 ¬1𝑜k=A1𝑜k=1𝑜B1𝑜k=A1𝑜k=1𝑜B
37 33 35 36 mpsyl 1𝑜kA1𝑜B1𝑜k=1𝑜B
38 25 12 opth 1𝑜k=1𝑜B1𝑜=1𝑜k=B
39 37 38 sylib 1𝑜kA1𝑜B1𝑜=1𝑜k=B
40 39 simprd 1𝑜kA1𝑜Bk=B
41 40 eximi k1𝑜kA1𝑜Bkk=B
42 isset BVkk=B
43 41 42 sylibr k1𝑜kA1𝑜BBV
44 30 43 syl A1𝑜BFn2𝑜BV
45 24 44 jca A1𝑜BFn2𝑜AVBV
46 1 45 impbii AVBVA1𝑜BFn2𝑜