| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnpr2o |  |-  ( ( A e. _V /\ B e. _V ) -> { <. (/) , A >. , <. 1o , B >. } Fn 2o ) | 
						
							| 2 |  | 0ex |  |-  (/) e. _V | 
						
							| 3 | 2 | prid1 |  |-  (/) e. { (/) , 1o } | 
						
							| 4 |  | df2o3 |  |-  2o = { (/) , 1o } | 
						
							| 5 | 3 4 | eleqtrri |  |-  (/) e. 2o | 
						
							| 6 |  | fndm |  |-  ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> dom { <. (/) , A >. , <. 1o , B >. } = 2o ) | 
						
							| 7 | 5 6 | eleqtrrid |  |-  ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> (/) e. dom { <. (/) , A >. , <. 1o , B >. } ) | 
						
							| 8 | 2 | eldm2 |  |-  ( (/) e. dom { <. (/) , A >. , <. 1o , B >. } <-> E. k <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } ) | 
						
							| 9 | 7 8 | sylib |  |-  ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> E. k <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } ) | 
						
							| 10 |  | 1n0 |  |-  1o =/= (/) | 
						
							| 11 | 10 | nesymi |  |-  -. (/) = 1o | 
						
							| 12 |  | vex |  |-  k e. _V | 
						
							| 13 | 2 12 | opth1 |  |-  ( <. (/) , k >. = <. 1o , B >. -> (/) = 1o ) | 
						
							| 14 | 11 13 | mto |  |-  -. <. (/) , k >. = <. 1o , B >. | 
						
							| 15 |  | elpri |  |-  ( <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } -> ( <. (/) , k >. = <. (/) , A >. \/ <. (/) , k >. = <. 1o , B >. ) ) | 
						
							| 16 |  | orel2 |  |-  ( -. <. (/) , k >. = <. 1o , B >. -> ( ( <. (/) , k >. = <. (/) , A >. \/ <. (/) , k >. = <. 1o , B >. ) -> <. (/) , k >. = <. (/) , A >. ) ) | 
						
							| 17 | 14 15 16 | mpsyl |  |-  ( <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } -> <. (/) , k >. = <. (/) , A >. ) | 
						
							| 18 | 2 12 | opth |  |-  ( <. (/) , k >. = <. (/) , A >. <-> ( (/) = (/) /\ k = A ) ) | 
						
							| 19 | 17 18 | sylib |  |-  ( <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } -> ( (/) = (/) /\ k = A ) ) | 
						
							| 20 | 19 | simprd |  |-  ( <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } -> k = A ) | 
						
							| 21 | 20 | eximi |  |-  ( E. k <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } -> E. k k = A ) | 
						
							| 22 |  | isset |  |-  ( A e. _V <-> E. k k = A ) | 
						
							| 23 | 21 22 | sylibr |  |-  ( E. k <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } -> A e. _V ) | 
						
							| 24 | 9 23 | syl |  |-  ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> A e. _V ) | 
						
							| 25 |  | 1oex |  |-  1o e. _V | 
						
							| 26 | 25 | prid2 |  |-  1o e. { (/) , 1o } | 
						
							| 27 | 26 4 | eleqtrri |  |-  1o e. 2o | 
						
							| 28 | 27 6 | eleqtrrid |  |-  ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> 1o e. dom { <. (/) , A >. , <. 1o , B >. } ) | 
						
							| 29 | 25 | eldm2 |  |-  ( 1o e. dom { <. (/) , A >. , <. 1o , B >. } <-> E. k <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } ) | 
						
							| 30 | 28 29 | sylib |  |-  ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> E. k <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } ) | 
						
							| 31 | 10 | neii |  |-  -. 1o = (/) | 
						
							| 32 | 25 12 | opth1 |  |-  ( <. 1o , k >. = <. (/) , A >. -> 1o = (/) ) | 
						
							| 33 | 31 32 | mto |  |-  -. <. 1o , k >. = <. (/) , A >. | 
						
							| 34 |  | elpri |  |-  ( <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } -> ( <. 1o , k >. = <. (/) , A >. \/ <. 1o , k >. = <. 1o , B >. ) ) | 
						
							| 35 | 34 | orcomd |  |-  ( <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } -> ( <. 1o , k >. = <. 1o , B >. \/ <. 1o , k >. = <. (/) , A >. ) ) | 
						
							| 36 |  | orel2 |  |-  ( -. <. 1o , k >. = <. (/) , A >. -> ( ( <. 1o , k >. = <. 1o , B >. \/ <. 1o , k >. = <. (/) , A >. ) -> <. 1o , k >. = <. 1o , B >. ) ) | 
						
							| 37 | 33 35 36 | mpsyl |  |-  ( <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } -> <. 1o , k >. = <. 1o , B >. ) | 
						
							| 38 | 25 12 | opth |  |-  ( <. 1o , k >. = <. 1o , B >. <-> ( 1o = 1o /\ k = B ) ) | 
						
							| 39 | 37 38 | sylib |  |-  ( <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } -> ( 1o = 1o /\ k = B ) ) | 
						
							| 40 | 39 | simprd |  |-  ( <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } -> k = B ) | 
						
							| 41 | 40 | eximi |  |-  ( E. k <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } -> E. k k = B ) | 
						
							| 42 |  | isset |  |-  ( B e. _V <-> E. k k = B ) | 
						
							| 43 | 41 42 | sylibr |  |-  ( E. k <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } -> B e. _V ) | 
						
							| 44 | 30 43 | syl |  |-  ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> B e. _V ) | 
						
							| 45 | 24 44 | jca |  |-  ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> ( A e. _V /\ B e. _V ) ) | 
						
							| 46 | 1 45 | impbii |  |-  ( ( A e. _V /\ B e. _V ) <-> { <. (/) , A >. , <. 1o , B >. } Fn 2o ) |