Metamath Proof Explorer


Theorem fnresdisj

Description: A function restricted to a class disjoint with its domain is empty. (Contributed by NM, 23-Sep-2004)

Ref Expression
Assertion fnresdisj FFnAAB=FB=

Proof

Step Hyp Ref Expression
1 relres RelFB
2 reldm0 RelFBFB=domFB=
3 1 2 ax-mp FB=domFB=
4 dmres domFB=BdomF
5 incom BdomF=domFB
6 4 5 eqtri domFB=domFB
7 fndm FFnAdomF=A
8 7 ineq1d FFnAdomFB=AB
9 6 8 eqtrid FFnAdomFB=AB
10 9 eqeq1d FFnAdomFB=AB=
11 3 10 bitr2id FFnAAB=FB=