Metamath Proof Explorer


Theorem fo00

Description: Onto mapping of the empty set. (Contributed by NM, 22-Mar-2006)

Ref Expression
Assertion fo00 F:ontoAF=A=

Proof

Step Hyp Ref Expression
1 fofn F:ontoAFFn
2 fn0 FFnF=
3 f10 :1-1A
4 f1eq1 F=F:1-1A:1-1A
5 3 4 mpbiri F=F:1-1A
6 2 5 sylbi FFnF:1-1A
7 1 6 syl F:ontoAF:1-1A
8 7 ancri F:ontoAF:1-1AF:ontoA
9 df-f1o F:1-1 ontoAF:1-1AF:ontoA
10 8 9 sylibr F:ontoAF:1-1 ontoA
11 f1ofo F:1-1 ontoAF:ontoA
12 10 11 impbii F:ontoAF:1-1 ontoA
13 f1o00 F:1-1 ontoAF=A=
14 12 13 bitri F:ontoAF=A=