Metamath Proof Explorer


Theorem foco

Description: Composition of onto functions. (Contributed by NM, 22-Mar-2006) (Proof shortened by AV, 29-Sep-2024)

Ref Expression
Assertion foco F : B onto C G : A onto B F G : A onto C

Proof

Step Hyp Ref Expression
1 simpl F : B onto C G : A onto B F : B onto C
2 fofun G : A onto B Fun G
3 2 adantl F : B onto C G : A onto B Fun G
4 forn G : A onto B ran G = B
5 eqimss2 ran G = B B ran G
6 4 5 syl G : A onto B B ran G
7 6 adantl F : B onto C G : A onto B B ran G
8 focofo F : B onto C Fun G B ran G F G : G -1 B onto C
9 1 3 7 8 syl3anc F : B onto C G : A onto B F G : G -1 B onto C
10 focnvimacdmdm G : A onto B G -1 B = A
11 10 eqcomd G : A onto B A = G -1 B
12 11 adantl F : B onto C G : A onto B A = G -1 B
13 foeq2 A = G -1 B F G : A onto C F G : G -1 B onto C
14 12 13 syl F : B onto C G : A onto B F G : A onto C F G : G -1 B onto C
15 9 14 mpbird F : B onto C G : A onto B F G : A onto C