Metamath Proof Explorer


Theorem foconst

Description: A nonzero constant function is onto. (Contributed by NM, 12-Jan-2007)

Ref Expression
Assertion foconst F:ABFF:AontoB

Proof

Step Hyp Ref Expression
1 frel F:ABRelF
2 relrn0 RelFF=ranF=
3 2 necon3abid RelFF¬ranF=
4 1 3 syl F:ABF¬ranF=
5 frn F:ABranFB
6 sssn ranFBranF=ranF=B
7 5 6 sylib F:ABranF=ranF=B
8 7 ord F:AB¬ranF=ranF=B
9 4 8 sylbid F:ABFranF=B
10 9 imdistani F:ABFF:ABranF=B
11 dffo2 F:AontoBF:ABranF=B
12 10 11 sylibr F:ABFF:AontoB