Metamath Proof Explorer


Theorem foelrn

Description: Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011)

Ref Expression
Assertion foelrn F:AontoBCBxAC=Fx

Proof

Step Hyp Ref Expression
1 dffo3 F:AontoBF:AByBxAy=Fx
2 1 simprbi F:AontoByBxAy=Fx
3 eqeq1 y=Cy=FxC=Fx
4 3 rexbidv y=CxAy=FxxAC=Fx
5 4 rspccva yBxAy=FxCBxAC=Fx
6 2 5 sylan F:AontoBCBxAC=Fx