Metamath Proof Explorer


Theorem fourierdlem13

Description: Value of V in terms of value of Q . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem13.a φA
fourierdlem13.b φB
fourierdlem13.x φX
fourierdlem13.p P=mp0m|p0=A+Xpm=B+Xi0..^mpi<pi+1
fourierdlem13.m φM
fourierdlem13.v φVPM
fourierdlem13.i φI0M
fourierdlem13.q Q=i0MViX
Assertion fourierdlem13 φQI=VIXVI=X+QI

Proof

Step Hyp Ref Expression
1 fourierdlem13.a φA
2 fourierdlem13.b φB
3 fourierdlem13.x φX
4 fourierdlem13.p P=mp0m|p0=A+Xpm=B+Xi0..^mpi<pi+1
5 fourierdlem13.m φM
6 fourierdlem13.v φVPM
7 fourierdlem13.i φI0M
8 fourierdlem13.q Q=i0MViX
9 8 a1i φQ=i0MViX
10 simpr φi=Ii=I
11 10 fveq2d φi=IVi=VI
12 11 oveq1d φi=IViX=VIX
13 4 fourierdlem2 MVPMV0MV0=A+XVM=B+Xi0..^MVi<Vi+1
14 5 13 syl φVPMV0MV0=A+XVM=B+Xi0..^MVi<Vi+1
15 6 14 mpbid φV0MV0=A+XVM=B+Xi0..^MVi<Vi+1
16 15 simpld φV0M
17 elmapi V0MV:0M
18 16 17 syl φV:0M
19 18 7 ffvelcdmd φVI
20 19 3 resubcld φVIX
21 9 12 7 20 fvmptd φQI=VIX
22 21 oveq2d φX+QI=X+VI-X
23 3 recnd φX
24 19 recnd φVI
25 23 24 pncan3d φX+VI-X=VI
26 22 25 eqtr2d φVI=X+QI
27 21 26 jca φQI=VIXVI=X+QI