Metamath Proof Explorer


Theorem fourierdlem5

Description: S is a function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis fourierdlem5.1 S=xππsinX+12x
Assertion fourierdlem5 XS:ππ

Proof

Step Hyp Ref Expression
1 fourierdlem5.1 S=xππsinX+12x
2 simpl XxππX
3 1red Xxππ1
4 3 rehalfcld Xxππ12
5 2 4 readdcld XxππX+12
6 pire π
7 6 renegcli π
8 iccssre ππππ
9 7 6 8 mp2an ππ
10 9 sseli xππx
11 10 adantl Xxππx
12 5 11 remulcld XxππX+12x
13 12 resincld XxππsinX+12x
14 13 1 fmptd XS:ππ