Metamath Proof Explorer


Theorem fprmappr

Description: A function with a domain of two elements as element of the mapping operator applied to a pair. (Contributed by AV, 20-May-2024)

Ref Expression
Assertion fprmappr X V A U B W A B C X D X A C B D X A B

Proof

Step Hyp Ref Expression
1 3simpa A U B W A B A U B W
2 1 adantr A U B W A B C X D X A U B W
3 simpr A U B W A B C X D X C X D X
4 simpl3 A U B W A B C X D X A B
5 fprg A U B W C X D X A B A C B D : A B C D
6 2 3 4 5 syl3anc A U B W A B C X D X A C B D : A B C D
7 prssi C X D X C D X
8 7 adantl A U B W A B C X D X C D X
9 6 8 fssd A U B W A B C X D X A C B D : A B X
10 9 3adant1 X V A U B W A B C X D X A C B D : A B X
11 simp1 X V A U B W A B C X D X X V
12 prex A B V
13 12 a1i X V A U B W A B C X D X A B V
14 11 13 elmapd X V A U B W A B C X D X A C B D X A B A C B D : A B X
15 10 14 mpbird X V A U B W A B C X D X A C B D X A B