Metamath Proof Explorer


Theorem fprmappr

Description: A function with a domain of two elements as element of the mapping operator applied to a pair. (Contributed by AV, 20-May-2024)

Ref Expression
Assertion fprmappr XVAUBWABCXDXACBDXAB

Proof

Step Hyp Ref Expression
1 3simpa AUBWABAUBW
2 1 adantr AUBWABCXDXAUBW
3 simpr AUBWABCXDXCXDX
4 simpl3 AUBWABCXDXAB
5 fprg AUBWCXDXABACBD:ABCD
6 2 3 4 5 syl3anc AUBWABCXDXACBD:ABCD
7 prssi CXDXCDX
8 7 adantl AUBWABCXDXCDX
9 6 8 fssd AUBWABCXDXACBD:ABX
10 9 3adant1 XVAUBWABCXDXACBD:ABX
11 simp1 XVAUBWABCXDXXV
12 prex ABV
13 12 a1i XVAUBWABCXDXABV
14 11 13 elmapd XVAUBWABCXDXACBDXABACBD:ABX
15 10 14 mpbird XVAUBWABCXDXACBDXAB