Metamath Proof Explorer


Theorem fprodshft

Description: Shift the index of a finite product. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Hypotheses fprodshft.1 φK
fprodshft.2 φM
fprodshft.3 φN
fprodshft.4 φjMNA
fprodshft.5 j=kKA=B
Assertion fprodshft φj=MNA=k=M+KN+KB

Proof

Step Hyp Ref Expression
1 fprodshft.1 φK
2 fprodshft.2 φM
3 fprodshft.3 φN
4 fprodshft.4 φjMNA
5 fprodshft.5 j=kKA=B
6 fzfid φM+KN+KFin
7 1 2 3 mptfzshft φjM+KN+KjK:M+KN+K1-1 ontoMN
8 oveq1 j=kjK=kK
9 eqid jM+KN+KjK=jM+KN+KjK
10 ovex kKV
11 8 9 10 fvmpt kM+KN+KjM+KN+KjKk=kK
12 11 adantl φkM+KN+KjM+KN+KjKk=kK
13 5 6 7 12 4 fprodf1o φj=MNA=k=M+KN+KB