Metamath Proof Explorer


Theorem fpwwe2lem1

Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Hypothesis fpwwe2.1 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
Assertion fpwwe2lem1 W𝒫A×𝒫A×A

Proof

Step Hyp Ref Expression
1 fpwwe2.1 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
2 simpll xArx×xrWexyx[˙r-1y/u]˙uFru×u=yxA
3 velpw x𝒫AxA
4 2 3 sylibr xArx×xrWexyx[˙r-1y/u]˙uFru×u=yx𝒫A
5 simplr xArx×xrWexyx[˙r-1y/u]˙uFru×u=yrx×x
6 xpss12 xAxAx×xA×A
7 2 2 6 syl2anc xArx×xrWexyx[˙r-1y/u]˙uFru×u=yx×xA×A
8 5 7 sstrd xArx×xrWexyx[˙r-1y/u]˙uFru×u=yrA×A
9 velpw r𝒫A×ArA×A
10 8 9 sylibr xArx×xrWexyx[˙r-1y/u]˙uFru×u=yr𝒫A×A
11 4 10 jca xArx×xrWexyx[˙r-1y/u]˙uFru×u=yx𝒫Ar𝒫A×A
12 11 ssopab2i xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=yxr|x𝒫Ar𝒫A×A
13 df-xp 𝒫A×𝒫A×A=xr|x𝒫Ar𝒫A×A
14 12 1 13 3sstr4i W𝒫A×𝒫A×A