Metamath Proof Explorer


Theorem frege55c

Description: Proposition 55 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege55c x=AA=x

Proof

Step Hyp Ref Expression
1 vex xV
2 1 frege54cor1c [˙x/y]˙y=x
3 frege53c [˙x/y]˙y=xx=A[˙A/y]˙y=x
4 2 3 ax-mp x=A[˙A/y]˙y=x
5 df-sbc [˙A/y]˙y=xAy|y=x
6 clelab Ay|y=xyy=Ay=x
7 5 6 bitri [˙A/y]˙y=xyy=Ay=x
8 eqtr2 y=Ay=xA=x
9 8 exlimiv yy=Ay=xA=x
10 7 9 sylbi [˙A/y]˙y=xA=x
11 4 10 syl x=AA=x