Metamath Proof Explorer


Theorem frege55c

Description: Proposition 55 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege55c x = A A = x

Proof

Step Hyp Ref Expression
1 vex x V
2 1 frege54cor1c [˙x / y]˙ y = x
3 frege53c [˙x / y]˙ y = x x = A [˙A / y]˙ y = x
4 2 3 ax-mp x = A [˙A / y]˙ y = x
5 df-sbc [˙A / y]˙ y = x A y | y = x
6 clelab A y | y = x y y = A y = x
7 5 6 bitri [˙A / y]˙ y = x y y = A y = x
8 eqtr2 y = A y = x A = x
9 8 exlimiv y y = A y = x A = x
10 7 9 sylbi [˙A / y]˙ y = x A = x
11 4 10 syl x = A A = x