Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
|- x e. _V |
2 |
1
|
frege54cor1c |
|- [. x / y ]. y = x |
3 |
|
frege53c |
|- ( [. x / y ]. y = x -> ( x = A -> [. A / y ]. y = x ) ) |
4 |
2 3
|
ax-mp |
|- ( x = A -> [. A / y ]. y = x ) |
5 |
|
df-sbc |
|- ( [. A / y ]. y = x <-> A e. { y | y = x } ) |
6 |
|
clelab |
|- ( A e. { y | y = x } <-> E. y ( y = A /\ y = x ) ) |
7 |
5 6
|
bitri |
|- ( [. A / y ]. y = x <-> E. y ( y = A /\ y = x ) ) |
8 |
|
eqtr2 |
|- ( ( y = A /\ y = x ) -> A = x ) |
9 |
8
|
exlimiv |
|- ( E. y ( y = A /\ y = x ) -> A = x ) |
10 |
7 9
|
sylbi |
|- ( [. A / y ]. y = x -> A = x ) |
11 |
4 10
|
syl |
|- ( x = A -> A = x ) |