Metamath Proof Explorer


Theorem frege55c

Description: Proposition 55 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege55c
|- ( x = A -> A = x )

Proof

Step Hyp Ref Expression
1 vex
 |-  x e. _V
2 1 frege54cor1c
 |-  [. x / y ]. y = x
3 frege53c
 |-  ( [. x / y ]. y = x -> ( x = A -> [. A / y ]. y = x ) )
4 2 3 ax-mp
 |-  ( x = A -> [. A / y ]. y = x )
5 df-sbc
 |-  ( [. A / y ]. y = x <-> A e. { y | y = x } )
6 clelab
 |-  ( A e. { y | y = x } <-> E. y ( y = A /\ y = x ) )
7 5 6 bitri
 |-  ( [. A / y ]. y = x <-> E. y ( y = A /\ y = x ) )
8 eqtr2
 |-  ( ( y = A /\ y = x ) -> A = x )
9 8 exlimiv
 |-  ( E. y ( y = A /\ y = x ) -> A = x )
10 7 9 sylbi
 |-  ( [. A / y ]. y = x -> A = x )
11 4 10 syl
 |-  ( x = A -> A = x )