Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑥 ∈ V |
2 |
1
|
frege54cor1c |
⊢ [ 𝑥 / 𝑦 ] 𝑦 = 𝑥 |
3 |
|
frege53c |
⊢ ( [ 𝑥 / 𝑦 ] 𝑦 = 𝑥 → ( 𝑥 = 𝐴 → [ 𝐴 / 𝑦 ] 𝑦 = 𝑥 ) ) |
4 |
2 3
|
ax-mp |
⊢ ( 𝑥 = 𝐴 → [ 𝐴 / 𝑦 ] 𝑦 = 𝑥 ) |
5 |
|
df-sbc |
⊢ ( [ 𝐴 / 𝑦 ] 𝑦 = 𝑥 ↔ 𝐴 ∈ { 𝑦 ∣ 𝑦 = 𝑥 } ) |
6 |
|
clelab |
⊢ ( 𝐴 ∈ { 𝑦 ∣ 𝑦 = 𝑥 } ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 = 𝑥 ) ) |
7 |
5 6
|
bitri |
⊢ ( [ 𝐴 / 𝑦 ] 𝑦 = 𝑥 ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 = 𝑥 ) ) |
8 |
|
eqtr2 |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 = 𝑥 ) → 𝐴 = 𝑥 ) |
9 |
8
|
exlimiv |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 = 𝑥 ) → 𝐴 = 𝑥 ) |
10 |
7 9
|
sylbi |
⊢ ( [ 𝐴 / 𝑦 ] 𝑦 = 𝑥 → 𝐴 = 𝑥 ) |
11 |
4 10
|
syl |
⊢ ( 𝑥 = 𝐴 → 𝐴 = 𝑥 ) |