Metamath Proof Explorer


Theorem fresin

Description: An identity for the mapping relationship under restriction. (Contributed by Scott Fenton, 4-Sep-2011) (Proof shortened by Mario Carneiro, 26-May-2016)

Ref Expression
Assertion fresin F:ABFX:AXB

Proof

Step Hyp Ref Expression
1 inss1 AXA
2 fssres F:ABAXAFAX:AXB
3 1 2 mpan2 F:ABFAX:AXB
4 resres FAX=FAX
5 ffn F:ABFFnA
6 fnresdm FFnAFA=F
7 5 6 syl F:ABFA=F
8 7 reseq1d F:ABFAX=FX
9 4 8 eqtr3id F:ABFAX=FX
10 9 feq1d F:ABFAX:AXBFX:AXB
11 3 10 mpbid F:ABFX:AXB