Metamath Proof Explorer


Theorem frins2f

Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 7-Feb-2011) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypotheses frins2f.1 yAzPredRAyψφ
frins2f.2 yψ
frins2f.3 y=zφψ
Assertion frins2f RFrARSeAyAφ

Proof

Step Hyp Ref Expression
1 frins2f.1 yAzPredRAyψφ
2 frins2f.2 yψ
3 frins2f.3 y=zφψ
4 sbsbc zyφ[˙z/y]˙φ
5 2 3 sbiev zyφψ
6 4 5 bitr3i [˙z/y]˙φψ
7 6 ralbii zPredRAy[˙z/y]˙φzPredRAyψ
8 7 1 biimtrid yAzPredRAy[˙z/y]˙φφ
9 8 frinsg RFrARSeAyAφ