Metamath Proof Explorer


Theorem frins3

Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 6-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses frins3.1 y=zφψ
frins3.2 y=Bφχ
frins3.3 yAzPredRAyψφ
Assertion frins3 RFrARSeABAχ

Proof

Step Hyp Ref Expression
1 frins3.1 y=zφψ
2 frins3.2 y=Bφχ
3 frins3.3 yAzPredRAyψφ
4 3 1 frins2 RFrARSeAyAφ
5 2 rspcv BAyAφχ
6 4 5 mpan9 RFrARSeABAχ