Metamath Proof Explorer


Theorem frlmlvec

Description: The free module over a division ring is a left vector space. (Contributed by Steven Nguyen, 29-Apr-2023)

Ref Expression
Hypothesis frlmlvec.1 F=RfreeLModI
Assertion frlmlvec RDivRingIWFLVec

Proof

Step Hyp Ref Expression
1 frlmlvec.1 F=RfreeLModI
2 drngring RDivRingRRing
3 1 frlmlmod RRingIWFLMod
4 2 3 sylan RDivRingIWFLMod
5 1 frlmsca RDivRingIWR=ScalarF
6 simpl RDivRingIWRDivRing
7 5 6 eqeltrrd RDivRingIWScalarFDivRing
8 eqid ScalarF=ScalarF
9 8 islvec FLVecFLModScalarFDivRing
10 4 7 9 sylanbrc RDivRingIWFLVec