Metamath Proof Explorer


Theorem frlmval

Description: Value of the "free module" function. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypothesis frlmval.f F=RfreeLModI
Assertion frlmval RVIWF=RmI×ringLModR

Proof

Step Hyp Ref Expression
1 frlmval.f F=RfreeLModI
2 elex RVRV
3 elex IWIV
4 id r=Rr=R
5 fveq2 r=RringLModr=ringLModR
6 5 sneqd r=RringLModr=ringLModR
7 6 xpeq2d r=Ri×ringLModr=i×ringLModR
8 4 7 oveq12d r=Rrmi×ringLModr=Rmi×ringLModR
9 xpeq1 i=Ii×ringLModR=I×ringLModR
10 9 oveq2d i=IRmi×ringLModR=RmI×ringLModR
11 df-frlm freeLMod=rV,iVrmi×ringLModr
12 ovex RmI×ringLModRV
13 8 10 11 12 ovmpo RVIVRfreeLModI=RmI×ringLModR
14 2 3 13 syl2an RVIWRfreeLModI=RmI×ringLModR
15 1 14 eqtrid RVIWF=RmI×ringLModR