Metamath Proof Explorer


Theorem frrlem16

Description: Lemma for general well-founded recursion. Establish a subset relationship. (Contributed by Scott Fenton, 11-Sep-2023)

Ref Expression
Assertion frrlem16 R Fr A R Se A z A w TrPred R A z Pred R A w TrPred R A z

Proof

Step Hyp Ref Expression
1 simplr R Fr A R Se A z A w TrPred R A z z A
2 simpllr R Fr A R Se A z A w TrPred R A z R Se A
3 1 2 jca R Fr A R Se A z A w TrPred R A z z A R Se A
4 simpr R Fr A R Se A z A w TrPred R A z w TrPred R A z
5 trpredtr z A R Se A w TrPred R A z Pred R A w TrPred R A z
6 3 4 5 sylc R Fr A R Se A z A w TrPred R A z Pred R A w TrPred R A z
7 6 ralrimiva R Fr A R Se A z A w TrPred R A z Pred R A w TrPred R A z