Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
|- ( ( ( ( R Fr A /\ R Se A ) /\ z e. A ) /\ w e. TrPred ( R , A , z ) ) -> z e. A ) |
2 |
|
simpllr |
|- ( ( ( ( R Fr A /\ R Se A ) /\ z e. A ) /\ w e. TrPred ( R , A , z ) ) -> R Se A ) |
3 |
1 2
|
jca |
|- ( ( ( ( R Fr A /\ R Se A ) /\ z e. A ) /\ w e. TrPred ( R , A , z ) ) -> ( z e. A /\ R Se A ) ) |
4 |
|
simpr |
|- ( ( ( ( R Fr A /\ R Se A ) /\ z e. A ) /\ w e. TrPred ( R , A , z ) ) -> w e. TrPred ( R , A , z ) ) |
5 |
|
trpredtr |
|- ( ( z e. A /\ R Se A ) -> ( w e. TrPred ( R , A , z ) -> Pred ( R , A , w ) C_ TrPred ( R , A , z ) ) ) |
6 |
3 4 5
|
sylc |
|- ( ( ( ( R Fr A /\ R Se A ) /\ z e. A ) /\ w e. TrPred ( R , A , z ) ) -> Pred ( R , A , w ) C_ TrPred ( R , A , z ) ) |
7 |
6
|
ralrimiva |
|- ( ( ( R Fr A /\ R Se A ) /\ z e. A ) -> A. w e. TrPred ( R , A , z ) Pred ( R , A , w ) C_ TrPred ( R , A , z ) ) |