Step |
Hyp |
Ref |
Expression |
1 |
|
predres |
|- Pred ( R , A , w ) = Pred ( ( R |` A ) , A , w ) |
2 |
|
relres |
|- Rel ( R |` A ) |
3 |
|
ssttrcl |
|- ( Rel ( R |` A ) -> ( R |` A ) C_ t++ ( R |` A ) ) |
4 |
2 3
|
ax-mp |
|- ( R |` A ) C_ t++ ( R |` A ) |
5 |
|
predrelss |
|- ( ( R |` A ) C_ t++ ( R |` A ) -> Pred ( ( R |` A ) , A , w ) C_ Pred ( t++ ( R |` A ) , A , w ) ) |
6 |
4 5
|
ax-mp |
|- Pred ( ( R |` A ) , A , w ) C_ Pred ( t++ ( R |` A ) , A , w ) |
7 |
1 6
|
eqsstri |
|- Pred ( R , A , w ) C_ Pred ( t++ ( R |` A ) , A , w ) |
8 |
|
inss1 |
|- ( t++ ( R |` A ) i^i ( A X. A ) ) C_ t++ ( R |` A ) |
9 |
|
coss1 |
|- ( ( t++ ( R |` A ) i^i ( A X. A ) ) C_ t++ ( R |` A ) -> ( ( t++ ( R |` A ) i^i ( A X. A ) ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) C_ ( t++ ( R |` A ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) ) |
10 |
8 9
|
ax-mp |
|- ( ( t++ ( R |` A ) i^i ( A X. A ) ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) C_ ( t++ ( R |` A ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) |
11 |
|
coss2 |
|- ( ( t++ ( R |` A ) i^i ( A X. A ) ) C_ t++ ( R |` A ) -> ( t++ ( R |` A ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) C_ ( t++ ( R |` A ) o. t++ ( R |` A ) ) ) |
12 |
8 11
|
ax-mp |
|- ( t++ ( R |` A ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) C_ ( t++ ( R |` A ) o. t++ ( R |` A ) ) |
13 |
10 12
|
sstri |
|- ( ( t++ ( R |` A ) i^i ( A X. A ) ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) C_ ( t++ ( R |` A ) o. t++ ( R |` A ) ) |
14 |
|
ttrcltr |
|- ( t++ ( R |` A ) o. t++ ( R |` A ) ) C_ t++ ( R |` A ) |
15 |
13 14
|
sstri |
|- ( ( t++ ( R |` A ) i^i ( A X. A ) ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) C_ t++ ( R |` A ) |
16 |
|
predtrss |
|- ( ( ( ( t++ ( R |` A ) i^i ( A X. A ) ) o. ( t++ ( R |` A ) i^i ( A X. A ) ) ) C_ t++ ( R |` A ) /\ w e. Pred ( t++ ( R |` A ) , A , z ) /\ z e. A ) -> Pred ( t++ ( R |` A ) , A , w ) C_ Pred ( t++ ( R |` A ) , A , z ) ) |
17 |
15 16
|
mp3an1 |
|- ( ( w e. Pred ( t++ ( R |` A ) , A , z ) /\ z e. A ) -> Pred ( t++ ( R |` A ) , A , w ) C_ Pred ( t++ ( R |` A ) , A , z ) ) |
18 |
7 17
|
sstrid |
|- ( ( w e. Pred ( t++ ( R |` A ) , A , z ) /\ z e. A ) -> Pred ( R , A , w ) C_ Pred ( t++ ( R |` A ) , A , z ) ) |
19 |
18
|
ancoms |
|- ( ( z e. A /\ w e. Pred ( t++ ( R |` A ) , A , z ) ) -> Pred ( R , A , w ) C_ Pred ( t++ ( R |` A ) , A , z ) ) |
20 |
19
|
ralrimiva |
|- ( z e. A -> A. w e. Pred ( t++ ( R |` A ) , A , z ) Pred ( R , A , w ) C_ Pred ( t++ ( R |` A ) , A , z ) ) |
21 |
20
|
adantl |
|- ( ( ( R Fr A /\ R Se A ) /\ z e. A ) -> A. w e. Pred ( t++ ( R |` A ) , A , z ) Pred ( R , A , w ) C_ Pred ( t++ ( R |` A ) , A , z ) ) |