Metamath Proof Explorer


Theorem frrlem16

Description: Lemma for general well-founded recursion. Establish a subset relation. (Contributed by Scott Fenton, 11-Sep-2023) Revised notion of transitive closure. (Revised by Scott Fenton, 1-Dec-2024)

Ref Expression
Assertion frrlem16 ( ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) ∧ 𝑧𝐴 ) → ∀ 𝑤 ∈ Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑧 ) Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑧 ) )

Proof

Step Hyp Ref Expression
1 predres Pred ( 𝑅 , 𝐴 , 𝑤 ) = Pred ( ( 𝑅𝐴 ) , 𝐴 , 𝑤 )
2 relres Rel ( 𝑅𝐴 )
3 ssttrcl ( Rel ( 𝑅𝐴 ) → ( 𝑅𝐴 ) ⊆ t++ ( 𝑅𝐴 ) )
4 2 3 ax-mp ( 𝑅𝐴 ) ⊆ t++ ( 𝑅𝐴 )
5 predrelss ( ( 𝑅𝐴 ) ⊆ t++ ( 𝑅𝐴 ) → Pred ( ( 𝑅𝐴 ) , 𝐴 , 𝑤 ) ⊆ Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑤 ) )
6 4 5 ax-mp Pred ( ( 𝑅𝐴 ) , 𝐴 , 𝑤 ) ⊆ Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑤 )
7 1 6 eqsstri Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑤 )
8 inss1 ( t++ ( 𝑅𝐴 ) ∩ ( 𝐴 × 𝐴 ) ) ⊆ t++ ( 𝑅𝐴 )
9 coss1 ( ( t++ ( 𝑅𝐴 ) ∩ ( 𝐴 × 𝐴 ) ) ⊆ t++ ( 𝑅𝐴 ) → ( ( t++ ( 𝑅𝐴 ) ∩ ( 𝐴 × 𝐴 ) ) ∘ ( t++ ( 𝑅𝐴 ) ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ ( t++ ( 𝑅𝐴 ) ∘ ( t++ ( 𝑅𝐴 ) ∩ ( 𝐴 × 𝐴 ) ) ) )
10 8 9 ax-mp ( ( t++ ( 𝑅𝐴 ) ∩ ( 𝐴 × 𝐴 ) ) ∘ ( t++ ( 𝑅𝐴 ) ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ ( t++ ( 𝑅𝐴 ) ∘ ( t++ ( 𝑅𝐴 ) ∩ ( 𝐴 × 𝐴 ) ) )
11 coss2 ( ( t++ ( 𝑅𝐴 ) ∩ ( 𝐴 × 𝐴 ) ) ⊆ t++ ( 𝑅𝐴 ) → ( t++ ( 𝑅𝐴 ) ∘ ( t++ ( 𝑅𝐴 ) ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ ( t++ ( 𝑅𝐴 ) ∘ t++ ( 𝑅𝐴 ) ) )
12 8 11 ax-mp ( t++ ( 𝑅𝐴 ) ∘ ( t++ ( 𝑅𝐴 ) ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ ( t++ ( 𝑅𝐴 ) ∘ t++ ( 𝑅𝐴 ) )
13 10 12 sstri ( ( t++ ( 𝑅𝐴 ) ∩ ( 𝐴 × 𝐴 ) ) ∘ ( t++ ( 𝑅𝐴 ) ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ ( t++ ( 𝑅𝐴 ) ∘ t++ ( 𝑅𝐴 ) )
14 ttrcltr ( t++ ( 𝑅𝐴 ) ∘ t++ ( 𝑅𝐴 ) ) ⊆ t++ ( 𝑅𝐴 )
15 13 14 sstri ( ( t++ ( 𝑅𝐴 ) ∩ ( 𝐴 × 𝐴 ) ) ∘ ( t++ ( 𝑅𝐴 ) ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ t++ ( 𝑅𝐴 )
16 predtrss ( ( ( ( t++ ( 𝑅𝐴 ) ∩ ( 𝐴 × 𝐴 ) ) ∘ ( t++ ( 𝑅𝐴 ) ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ t++ ( 𝑅𝐴 ) ∧ 𝑤 ∈ Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑧 ) ∧ 𝑧𝐴 ) → Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑤 ) ⊆ Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑧 ) )
17 15 16 mp3an1 ( ( 𝑤 ∈ Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑧 ) ∧ 𝑧𝐴 ) → Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑤 ) ⊆ Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑧 ) )
18 7 17 sstrid ( ( 𝑤 ∈ Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑧 ) ∧ 𝑧𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑧 ) )
19 18 ancoms ( ( 𝑧𝐴𝑤 ∈ Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑧 ) ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑧 ) )
20 19 ralrimiva ( 𝑧𝐴 → ∀ 𝑤 ∈ Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑧 ) Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑧 ) )
21 20 adantl ( ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) ∧ 𝑧𝐴 ) → ∀ 𝑤 ∈ Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑧 ) Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑧 ) )