| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frr.1 |
|- F = frecs ( R , A , G ) |
| 2 |
|
eqid |
|- { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } = { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } |
| 3 |
2
|
frrlem1 |
|- { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
| 4 |
3 1
|
frrlem15 |
|- ( ( ( R Fr A /\ R Se A ) /\ ( g e. { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } /\ h e. { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
| 5 |
3 1 4
|
frrlem9 |
|- ( ( R Fr A /\ R Se A ) -> Fun F ) |
| 6 |
|
eqid |
|- ( ( F |` Pred ( t++ ( R |` A ) , A , z ) ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) = ( ( F |` Pred ( t++ ( R |` A ) , A , z ) ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |
| 7 |
|
simpl |
|- ( ( R Fr A /\ R Se A ) -> R Fr A ) |
| 8 |
|
predres |
|- Pred ( R , A , z ) = Pred ( ( R |` A ) , A , z ) |
| 9 |
|
relres |
|- Rel ( R |` A ) |
| 10 |
|
ssttrcl |
|- ( Rel ( R |` A ) -> ( R |` A ) C_ t++ ( R |` A ) ) |
| 11 |
|
predrelss |
|- ( ( R |` A ) C_ t++ ( R |` A ) -> Pred ( ( R |` A ) , A , z ) C_ Pred ( t++ ( R |` A ) , A , z ) ) |
| 12 |
9 10 11
|
mp2b |
|- Pred ( ( R |` A ) , A , z ) C_ Pred ( t++ ( R |` A ) , A , z ) |
| 13 |
8 12
|
eqsstri |
|- Pred ( R , A , z ) C_ Pred ( t++ ( R |` A ) , A , z ) |
| 14 |
13
|
a1i |
|- ( ( ( R Fr A /\ R Se A ) /\ z e. A ) -> Pred ( R , A , z ) C_ Pred ( t++ ( R |` A ) , A , z ) ) |
| 15 |
|
frrlem16 |
|- ( ( ( R Fr A /\ R Se A ) /\ z e. A ) -> A. a e. Pred ( t++ ( R |` A ) , A , z ) Pred ( R , A , a ) C_ Pred ( t++ ( R |` A ) , A , z ) ) |
| 16 |
|
ttrclse |
|- ( R Se A -> t++ ( R |` A ) Se A ) |
| 17 |
|
setlikespec |
|- ( ( z e. A /\ t++ ( R |` A ) Se A ) -> Pred ( t++ ( R |` A ) , A , z ) e. _V ) |
| 18 |
17
|
ancoms |
|- ( ( t++ ( R |` A ) Se A /\ z e. A ) -> Pred ( t++ ( R |` A ) , A , z ) e. _V ) |
| 19 |
16 18
|
sylan |
|- ( ( R Se A /\ z e. A ) -> Pred ( t++ ( R |` A ) , A , z ) e. _V ) |
| 20 |
19
|
adantll |
|- ( ( ( R Fr A /\ R Se A ) /\ z e. A ) -> Pred ( t++ ( R |` A ) , A , z ) e. _V ) |
| 21 |
|
predss |
|- Pred ( t++ ( R |` A ) , A , z ) C_ A |
| 22 |
21
|
a1i |
|- ( ( ( R Fr A /\ R Se A ) /\ z e. A ) -> Pred ( t++ ( R |` A ) , A , z ) C_ A ) |
| 23 |
|
difss |
|- ( A \ dom F ) C_ A |
| 24 |
|
frmin |
|- ( ( ( R Fr A /\ R Se A ) /\ ( ( A \ dom F ) C_ A /\ ( A \ dom F ) =/= (/) ) ) -> E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) |
| 25 |
23 24
|
mpanr1 |
|- ( ( ( R Fr A /\ R Se A ) /\ ( A \ dom F ) =/= (/) ) -> E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) |
| 26 |
3 1 4 6 7 14 15 20 22 25
|
frrlem14 |
|- ( ( R Fr A /\ R Se A ) -> dom F = A ) |
| 27 |
|
df-fn |
|- ( F Fn A <-> ( Fun F /\ dom F = A ) ) |
| 28 |
5 26 27
|
sylanbrc |
|- ( ( R Fr A /\ R Se A ) -> F Fn A ) |