Step |
Hyp |
Ref |
Expression |
1 |
|
frr.1 |
|- F = frecs ( R , A , G ) |
2 |
1
|
frr1 |
|- ( ( R Fr A /\ R Se A ) -> F Fn A ) |
3 |
2
|
fndmd |
|- ( ( R Fr A /\ R Se A ) -> dom F = A ) |
4 |
3
|
eleq2d |
|- ( ( R Fr A /\ R Se A ) -> ( X e. dom F <-> X e. A ) ) |
5 |
4
|
pm5.32i |
|- ( ( ( R Fr A /\ R Se A ) /\ X e. dom F ) <-> ( ( R Fr A /\ R Se A ) /\ X e. A ) ) |
6 |
|
fveq2 |
|- ( y = X -> ( F ` y ) = ( F ` X ) ) |
7 |
|
id |
|- ( y = X -> y = X ) |
8 |
|
predeq3 |
|- ( y = X -> Pred ( R , A , y ) = Pred ( R , A , X ) ) |
9 |
8
|
reseq2d |
|- ( y = X -> ( F |` Pred ( R , A , y ) ) = ( F |` Pred ( R , A , X ) ) ) |
10 |
7 9
|
oveq12d |
|- ( y = X -> ( y G ( F |` Pred ( R , A , y ) ) ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) |
11 |
6 10
|
eqeq12d |
|- ( y = X -> ( ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) <-> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) ) |
12 |
11
|
imbi2d |
|- ( y = X -> ( ( ( R Fr A /\ R Se A ) -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) <-> ( ( R Fr A /\ R Se A ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) ) ) |
13 |
|
eqid |
|- { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } = { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } |
14 |
13
|
frrlem1 |
|- { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
15 |
14 1
|
frrlem15 |
|- ( ( ( R Fr A /\ R Se A ) /\ ( g e. { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } /\ h e. { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
16 |
14 1 15
|
frrlem10 |
|- ( ( ( R Fr A /\ R Se A ) /\ y e. dom F ) -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) |
17 |
16
|
expcom |
|- ( y e. dom F -> ( ( R Fr A /\ R Se A ) -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) ) |
18 |
12 17
|
vtoclga |
|- ( X e. dom F -> ( ( R Fr A /\ R Se A ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) ) |
19 |
18
|
impcom |
|- ( ( ( R Fr A /\ R Se A ) /\ X e. dom F ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) |
20 |
5 19
|
sylbir |
|- ( ( ( R Fr A /\ R Se A ) /\ X e. A ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) |